

GCSE **Mathematics**

Paper 1 43651H Mark scheme

43651H June 2015

Version 1: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
sc	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	e.g. accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 e.g. 3.14, 3.142, 3.1416
Q	Marks awarded for quality of written communication
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Paper 1 Higher Tier

Q	Answer	Mark	Comments				
	15x + 35 or 35 + 15x	B1					
	Additional Guidance						
1(a)	Answer line takes precedence. Mark answer line even if correct answer seen in script.						
	Do not award if incorrect further work. For example $15x + 35 = 50x$ but allow $15x + 35 = 5(3x + 7)$ as this is just checking answer is correct.						

1(b)	w = z - 3 or $w = -3 + zor z - 3 = w or -3 + z = w$	B1	Must have $w = or = w$	
	Additional Guidance			
	Many students write z like the number 2. Allow for this			

	2y(2y + 3)	B2	B1 for $2(2y^2 + 3y)$ or $y(4y +$	6)	
	Additional Guidance				
	Allow \times signs between numbers, brackets and letters, eg 2y \times (2y + 3) or 2(2 \times y ² + 3 \times y)				
1(c)	Factorising may be done in two 'steps', ie $y(4y + 6)$ followed by $2y(2y + 3)$. If the second attempt is done wrongly, B1 can still be awarded.				
	y(4y+6)			B1	
	2y(2y+6)	В0			
	$2(2y^2 + 3y)$	B1			
	$2(2y^2 + 3y) 2y(y + 3)$	В0			

Q	Answer	Mark	Comments			
		В3	B2 for correct partial straight-line graph that does not go from (-3, -11) to (3, 7) but does go to at least (-2, -8) on the left and (2, 4) on the right.			
			B2 for no line but points $(-3, -11)$, $(3, 7)$ and one from $\{(-2, -8), (-1, -5), (0, -2), (1, 1), (2,4)\}$ marked with no incorrect points.			
	Straight ruled line graph from (-3, -11) to (3, 7)		B1 for straight line graph with gradient of 3 of any length.			
			or B1 for straight line graph passing through (0, -2) of any length.			
2			or B1 if no graph drawn and table of values with at least three correct points, ignore incorrect points.			
			or B1 for at least three correct points marked on graph (points may be implied by a line passing through at least 3 integer values of x) with incorrect points or lines also drawn.			
	Ad	ditional G	Guidance			
	Quality of plotting and drawing.					
	Points must be plotted within ½ square.					
	Lines should pass within ½ square of the correct coordinate (not the plotted value).					
	Any 'double lines' or choice maximum B2					
	Points plotted wrongly but line drawn correctly, line takes precedence for a maximum of B2.					

Q	Answer	Mark	Comments	
	Alternative method 1			
	3 × 4.5 or 13.5 or 3 × 4500 or 13500	M1	oe	
	their 13.5 ÷ 10 × 200 or $\frac{\text{their } 13500 \div 10 \times 200}{1000}$	M1dep	oe	
	270	A1	SC1 digits 27	
	Alternative method 2			
	(200 × 4.5) ÷ 10 or 90 (ml)	M1	oe	
3	their 90 × 3	M1dep	oe	
	270	A1	SC1 digits 27	
	Alternative method 3			
	200 : 10000 or $\frac{1}{50}$ and $\frac{1}{50} \times 3$ or 0.06	M1	ое	
	Their 0.06 × 4.5 × 1000	M1dep	oe	
	270	A1	SC1 digits 27	
				

Comments

Q

Answer

Litres

Lawn feed

(ml)

4.5

	Additional Guidance				
	Students may convert wrongly to millilitres using a factor of 10 (ie 450) then corthe same 'wrong' factor to get the correct answer. Allow this, as the method is v				
	However, partial marks cannot be awarded if a wrong conversion factor is used seen allow SC1	but if digits 2			
	(1 gallon =) 45 millilitres				
	(3 gallons =) 135 millilitres				
	135 millilitres ÷ 10 = 13.5 litres	M1,			
	$13.5 \div 10 \times 200 = 270$	M1dep, A			
	(1 gallon =) 45 millilitres				
	(3 gallons =) 135 millilitres	SC1			
	$135 \div 10 \times 200 = 2700$				
3	If a 'build up' method is used to get millilitres equivalent to 13.5 litres then it must be fully corr to get the M1dep				
	13.5	M1			
	$10 = 200, 1 = 20, 3 \times 20 = 80, 0.5 = 10$	M1dep			
	200 + 80 + 10 = 290	A0			
	13.5	M1			
	10 = 200, 1 = 20, 3 = 60, 0.5 = 10	MO			
	200 + 20 + 60 + 10 = 290	A0			
	Gallons 1 ×3 3				

10 ~

200

13.5

 $\times 1.35$

*→*13.5

[≯]270

M1

M1dep

Α1

Q	Answer	Mark	Commen	ts
	Alternative method 1			
	6 × 18 or 108	M1	(16.2 + 18.1 + 15.9 + 17.8	$+21+x) \div 6 = 18$
	their 108 – (16.2+18.1+15.9+17.8+21)	M1 dep	oe eg complete repeated s Look for total written under	
	19	A1	SC1 89 seen	
	Alternative method 2			
	18 – each value in table, eg 1.8, –0.1, +2.1, +0.2, –3	M1	Allow one error	
4	Totals their subtractions their $(1.8 + -0.1 + 2.1 + 0.2 + -3)$ or 1 and adds to 18	M1dep		
	19	A1		
	Additional Guidance			
	16.2 + 18.1 = 34.2, 34.2 + 15.9 = 60.1 60.1 + 17.8 = 77.9, 77.9 + 21.0 = 88.9			
	$6 \times 18 = 118$ 118 - 88.9 = 30.9			M1 M1dep, A0
	$(16.2 + 18.1 + 15.9 + 17.8 + 21 + x) \div 6 = 18$ x = 118 - 89.7 x = 28.3 Allow incorrect solution of equation if full method			M1 M1dep A0
	1.8 - 0.1 + 2.1 + 0.3 -3 = 1.1 19.1			M1, M1dep, A0

Q	Answer	Mark	Comments	
	11 × 2.5 or 27.5 or 3.1 × 3^2 or 27.9 or 9π	M1	Allow 3.14×3^2 Accept 27.5^2 as meaning 27.5^2	5 cm²
	27.5 and 27.9 or 28.26	A1	Do not accept 9π at this stag of values cannot be made wi to a number.	
	Correct conclusion based on both their areas using correct methods with at least one correct area	Q1	Strand (iii) Ignore any incorrect subtract 27.9 – 27.5	ion of
	Additional Guidance			
	Indication of which is bigger shape can be	by the name, the value or the ca	alculation.	
5	$11 \times 2.5 = 22.5$ $3.1 \times 3^2 = 27.9$ Circle		Both methods, one value ncorrect, correct conclusion sing name of shape	M1, A0, Q1
	$11 \times 2.5 = 27.5$ $3.1 \times 3^2 = 3.1 \times 6 = 18.6$ 11×2.5		Soth methods, one value ncorrect, correct conclusion sing calculation	M1, A0, Q1
	$11 \times 2.5 = 22.5$ $3.1 \times 3^2 = 18.6$ Rectangle		oth methods, correct onclusion but Q0 as both alues incorrect.	M1, A0, Q0
	$11 \times 2.5 = 27.5$ $2 \times 3.1 \times 3 = 3.1 \times 6 = 18.6$ 27.5		One method correct, Q0 as one nethod wrong, therefore one alue wrong.	M1, A0, Q0
	$11 \times 2.5 = 27.5$ $3.1 \times 3 \times 3 = 3.1 \times 9 = 27.9$ Circle bigger by 0.3		ully correct, ignore wrong ubtraction.	M1, A1, Q1

Q	Answer	Mark	Comn	nents
			,	
	56 marked at centre point or 124 marked in centre or 28 shown as 'half angle' at centre. If no angles marked on diagram: 56 and 124 seen in script or 248 ÷ 4 seen in script or 90 – (56 ÷ 2) seen in script	M1	Accept Q = 56 stated in	ı script.
	62	A1	62 with no working or n working full marks.	o contradictory
	Ad	ditional (Guidance	
	Allow 56 marked at centre even if the ex	terior ang	le is wrongly calculated.	
6	mirror line 126 O R 56 R			M1 A0
	$ \begin{array}{c} $	R	560	M1 A1
	mirror line P 28 56°		M1 A0	
	90 – 28 = 78			

Q	Answer	Mark	Comments		
	Alternative method 1				
	Correctly lists first three bus times to X or Y				
	ie 7 25, 7 50, 8 15, or 7 20, 7 40, 8 00,	M1	Accept any notation for time eg 7.20, 7:20 7 20, 0720, 7-20, 20 past 7, 720		
	Continues both lists at least as far as a common time ie 7 25, 7 50, 8 15, 8 40, and 7 20, 7 40, 8 00, 8 20, 8 40,	M1dep	Allow one error up to and including their common time, ignore errors after.		
7	8.40 (am) or 08 40 or after/in 100 minutes or after/in 1h 40 minutes	A1	SC2 No other working and any time that is 7 am + 100 <i>n</i> minutes, eg 10 20, 12 00, 13 40 etc		
	Alternative method 2	l			
	Correctly lists first three multiples of 25 or 20 ie 25, 50, 75, or 20, 40, 60,	M1	25 × 4 and 20 × 5		
	Stops both lists at 100 or identifies 100 or 1 hour 40 minutes	M1dep			
	8.40 (am) or 08 40 or after/in 100 minutes or after/in 1h 40 minutes	A1	SC2 No other working and any time that is 7 am + 100n minutes, eg 10 20, 12 00, 13 40 etc		

Additional guidance on next page

Q	Answer	Mark	Comments
---	--------	------	----------

	Additional Guidance					
	7 25, 7 50, 8 15, 8 40, 9 05, 7 20, 7 40, 8 00, 8 20, 8 40, 9 00, (Answer =) 8 40 pm	pm is wrong.	M1 M1dep A0			
	(No working) (Answer =) 8 40 pm	Method by implication	M2			
	7 25, 7 50, 8 05, 8 30, 8 55, 9 20 7 20, 7 40, 8 00, 8 20, 8 40, 9 00 9 20 (Answer =) 9 20	Second list correct for 3 values. One error in first list. Both lists taken to a common value	M1 M1dep A0			
	7 25, 7 50, 8 10, 8 30, 9 00, 9 15 7 20, 7 40, 8 00, 8 20, 8 40, 9 00 (Answer =) 9 00	Second list correct for 3 values. Both lists taken to a common value but more than one error in first list.	M1 M0dep A0			
7 cont	25, 50, 75, 80, 20, 40, 60, 80, (Answer =) 8 10	At least one list correct for 3 values. Does not get to 100	M1 M0 A0			
	7 00, 25, 50, 8 15, 40, 9 05, 7 00, 20, 40, 8 00, 20, 40, 9 00 8 40	Intention to list times clear	M1 M1dep A1			
	·	an 'What time' then the students do not ime after 7am. If so then the wording m	_			
	7 25, 7 50, 8 15, 8 40, 9 05, 7 20, 7 40, 8 00, 8 20, 8 40, 9 00, (Answer =) 1 h 40 after 7	Must make it clear that the time is after 7 (am)	M1 M1dep A1			
	7 25, 7 50, 8 15, 8 40, 9 05, 7 20, 7 40, 8 00, 8 20, 8 40, 9 00, (Answer =) 1 h 40	Not clear that the time is after 7 am	M1, M1dep A0			

Q	Answer	Mark	Comments			
		•				
			B2 All three conditions met but no numbers	ot all whole		
	7, 8, 9, 11, 11, 11 7, 7, 9, 11, 11, 11	В3	B2 two conditions met with six nu (need not be integers)	ımbers		
	7, 9, 9, 11, 11, 11		B1 one condition met with six nul (need not be integers)	mbers		
			Numbers do not have to be in ord	der.		
	Additional Guidance					
	Mark answer line unless blank, then loo Must be 6 numbers.	k for an ol	ovious set of 6 numbers.			
8	$7, 9, 9\frac{1}{2}, 10\frac{1}{2}, 11, 11$	Mode, range and median but not all whole numbers		B2		
	7 8 10 11 11 11	Mode and range		B2		
	7 8 9 10 11 11	Mode an	d range	B2		
	8 9 10 10 11 12	Median and range		B2		
	8 9 10 11 12 11	Mode and range (order not important)		B2		
	7.5, 8, 10, 11, 11, 11.5	Mode an	d range	B2		
	8 9 10 10 11 11	Median		B1		

Q	Answer	Mark	Comments
	0.4 (relative frequency of carp) or 1 (bream) their roach frequency ÷ 10 (must be	B1	oe
9(a)	less than 1) or 1 – their carp relative frequency – 0.1 or 0.5	M1	oe
	Fully correct table ie (4) 1 5 0.4 (0.1) 0.5	A1	oe accept equivalent fractions or percentages for relative frequencies throughout
	Additional Guidance If table fully correct award 3 marks. If not check for 0.4 or 1. Either scores B1. Then check last column/bottom row. If the roach relative frequency = roach frequency ÷ 10 or if the total of the relative frequencies is 1 then award M1.		

Q	Answer	Mark	Comments		
	Increase sample size Repeat it Check some more Catch more fish	B1	oe		
	Additional Guidance				
	Count it again, catch more fish	Last bit scores		B1	
9(b)	Fish on more days	More impl	B1		
	Fish for longer	Longer im	B1		
	Fish on different days	Different of sample	ВО		
	Do the estimate twice	Not implying increasing sample		В0	
	Catch them all	Not a sam	pple	В0	
	Experiment at different times of day	Not implying increasing sample		В0	

Q	Answer	Mark	Со	mments			
	52 – 6 <i>n</i> or – 6 <i>n</i> + 52	B2	B1 $-6n + k$ where zero (ie no constant	k is any value, including), other than 52			
			Do not accept -n6 b	ut – n6 + 52 is B1			
	Ad	ditional G	Guidance				
	If $52 - 6n$ seen in script and 16 (next term) given on answer line allow B2						
10	Allow any letter used, eg 52 – 6x						
	Accept equivalent expressions such as $46 - 6(n - 1)$						
	Allow \times signs, eg –6 \times n + 52, n \times –6 + 52						
	46 - n - 5(n + 1) B1						
	52 - 6n = 0						

Comments

Answer

Q

11	Alternative method 1	M1	Two arcs of equal radius centred on P, crossing L.
	P X X	M1dep	Arcs on other side of L measured from X and Y with same radius. Arcs on other side of L measured from X and Y with radius XP (effectively reflection of P), arcs need not be drawn at P. or arcs for perpendicular bisector of XY drawn on both sides of L.
	X Y	A1	Line within tolerance. Line does not have to go below <i>L</i> .
	Additional Guidance		
		need be s	g two points on L from which to work. Only hown, although arcs on both sides often are. equidistant (± 1mm) from centre.

Use measuring tool if necessary to establish if radii of arcs drawn are equal.

scanning.

Use the 'contrast slider' to darken the image if necessary as pencil does not show up well under

If the second pair of arcs intersect on same side of L as P, above or below P, this is not an accurate method, however, allow if perpendicular within tolerance (± 1mm from centre)

Q Answer Mark Comments	
------------------------	--

	Alternative method 2		
	X		Intersecting arcs centred on each end of <i>L</i> with radii equal to the distance to <i>P</i> , drawn on other side of <i>L</i> .
		M2	Intersecting arcs centred on two points on <i>L</i> with radii equal to the distance to <i>P</i> , drawn on other side of <i>L</i> .
	X		The arcs need not be drawn through <i>P</i> .
11 cont		A1	Line within tolerance. Line does not have to go below \boldsymbol{L} .

Additional Guidance

This is a common method. Measuring from P from either end and drawing arcs on other side gives a reflection of P. Both arcs must be drawn to get M2. Use overlay to establish if the radii are accurate ±1 mm

Another method combining elements of Alt 1 and 2, is to draw arcs through P from either end that intersect *L*. Then use these points to establish the radii to P to draw arcs on the other side. This (rare) method can be checked using the overlay on the drawing tools.

Use the 'contrast slider' to darken the image if necessary as pencil does not show up well under scanning.

Q	Answer	Mark	Comments					
			B1 all integer points from (1, 9) to (9, 1)					
	Continuous graph from (1, 9) to (9, 1)	B2	or B1 for a continuous graph beyond the given limits, unless $x \le 1$ or $x \ge 9$ clearly shown as a crossed out region.					
			Ignore any other shading					
			or B1 for continuous graph from (2, 8) to (8, 2)					
	Additional Guidance							
12(a)	Ignore lines, such as $w = 1$ or $w = 9$, but not any lines that may be a wrong $w + l = 10$.							
	If there is a choice of lines then correct line must be clearly marked but not if the other line is $l = 3w$ or $w = 3l$							
	B2 B2	B2	B1 B1 B1					

	Alternative method 1				
	Graph of $l = 3w$ drawn	M1			
	2.5	A1	SC1 7.5 from $w = 3l$ drawn		
12(b)	Alternative method 2				
	4w = 10	M1	oe		
	2.5	A1	Allow embedded.		
	Additional Guidance				
	If 2.5 stated in script, award full marks, otherwise scroll up to check graph for possible working.				

Q	Answer	Mark	Commer	nts
		•	7	
13	12:16 or 15:12 or $\frac{12}{16}$ or 0.75 or $\frac{16}{12}$ or 1.33 or $\frac{15}{12}$ or 1.25 or $\frac{12}{15}$ or 0.8	M1	oe From accurate working, eg	g 19.5 rounded to
	Ac	Iditional (Guidance	
	$\frac{16}{12}$ = 1.3, 1.3 × 15 = 19.5			M1, A0
	1.33 × 15 = 19.995			M1, A0
	1.3 × 15 = 19.5			M0, A0

Q	Answer	Mark	Comments		
	Alternative method 1				
	6 stated or shown on diagram as length from A to intersection of AB and horizontal line from D.	B1	Maybe on diagram		
	10^2 – their 6^2 or 64 or $(BC)^2 + 6^2 = 10^2$	M1dep	their 6 is the length from A to intersection of AB and horizontal line from D.		
			10 ² + their 6 ² or 136		
	√their 64	M1 dep	64 must come from 10 ² – their 6 ²		
14	8	A1	8 with no working M0		
	Alternative method 2				
	6 stated or shown on diagram as length from <i>A</i> to intersection of <i>AB</i> and horizontal line from <i>D</i> .	B1	Maybe on diagram		
	3, 4, 5 Pythagorean triple shown	M1			
	6, 8 shown or stated	M1 dep			
	8	A1	8 with no working M0		

Question 14 continues on next page

Q	Answer	Mark	Comments
---	--------	------	----------

	Additional Guidance	
	6 9 cm 0 3 cm	Minimum for 4 marks
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B0, M1 M1dep A0
14 cont	$10^{2} - 5^{2} = 75$ $\sqrt{75} \approx 8.5$	B0 M0
	Use of cos rule. If left with cos 90 M0	
	$10^{2} = x^{2} + 6^{2} - 2 \times 6 \times x \times \cos 90$	B1 M0

Q	Answer	Mark		Comments		
	5x - 3x > 7 - 2 or 2x > 5	M1	8x > 5 or 2x > 9			
	x > 2.5	A1				
	3	A1ft	ft if M1 awarded or $2x > 9$ leads to	so that $8x > 5$ leads to 1 0.5		
	A	dditional G	Guidance			
	As the question asks for the smallest in use of an inequality, but solving an equ being considered.	-	-			
	Trial and improvement leading to 3 is fu	ull marks ot	herwise M0			
	3 with no working is full marks, but 3 fro	om wrong w	ork is zero marks			
	$8x > 5$, $x > \frac{5}{8}$, $x = 1$ M1, A0, A1ft					
15	$2x > 9, x > \frac{9}{2}, x = 5$	M1, A0, A1ft				
	$2x = 5, x = 2\frac{1}{2}, x = 3$ M1, A1, A					
	$2x = 5, x = 2\frac{1}{2},$	M0, A0, A0				
	$2x > 5$, $x = 2\frac{1}{2}$, $x = 3$					
	$8x = 5, x = \frac{5}{8}, x = 1$ M1, A0					
	$2x = 9$, $x = \frac{9}{2}$, $x = 5$			M1, A0, A1ft		
	5x-3x > 7-3, $2x > 4$, $x > 2$, $x = 3$ (cannot assume a misread as 3 is a nu	mber in que	estion)	M0, A0, A0		
		Could be the of the equat	e wrong solution ion	M0, A0, A0		

Q	Answer	Mark	Comme	nts	
16a	$-\frac{3}{2}$	B1			
16b	$\frac{4}{3}$	B1			
	16, 22, 12 or 17, 21, 12	ВЗ	B2 for 16, 21, 13 B2 for 2 correct from 16, B2 for 2 correct from 17, B2 for 16.4, 21.4 and 12.3 B1 for 2 out of 16.4, 21.4 Or B1 for 1 correct ie 16 or B1 for 0.2 or $\frac{1}{5}$ or \div 5 or B1 for any of $\frac{(82 \times 50)}{250}$, $\frac{(107 \times 50)}{250}$ or $\frac{(63 \times 50)}{250}$	21, 12 2 and 12.2 or 17, 22 or 21 or 12	
17	Ad	ditional G	Buidance		
	Mark table. Only check in script if table b	olank or no	ot worth any marks		
	If decimal values and whole number given in the table, eg 16.4 or 16, then mark the integer				
	If values given as fractions must be a mi	xed numb	er in its simplest form.		
	16, 22, 13			B2	
	16, 20, 13			B1	
	16.4, 20.7, 12.2			B1	
	16.2, 20.7, 12.2			В0	

Q	Answer	Mark	Comments		
	(3a-b)(3a+b)	M1			
	3a + b	A1	Answer only 2 marks		
	Additional Guidance				
18	Check answer is from correct work, as s	purious 'ca	ancelling' could lead to the correct answer		
	$3a \underbrace{3a^2 + b^2}_{3a - b} + b$ $9a^2 \div 3a = 3a$ $-b^2 \div -b = +b$	МО			

Answer

Comments

Q

	Alternative method 1				
	BTC = 180 - y (angles on straight line) or $y + BTC = 180$	B1	180 – y may be marked on diagram		
	BCT = 180 - y (isosceles)	B1	180 - y may be marked on diagram		
	CAB = 180 - y (alternate segment or angles in the opposite segment)	Q1	Strand (ii) Fully correct proof with reasons. Q0 if any reasons not given		
	Alternative method 2				
	XCB = y (isosceles and symmetry)	B1	X is point to left of SC extended		
19(a)	ACB= $y - 90$ (angles between tangent and radius is 90°)	B1	y – 90 may be marked on diagram		
	CAB = 180 - (y - 90 + 90) (angles in triangle)	Q1	Strand (ii) Fully correct proof with reasons. Q0 if any reasons not given		
	Alternative method 3				
	BTC = 180 - y (angles on straight line)	B1	180 – y may be marked on diagram		
	BCT = 180 - y (isosceles)	B1	180 – y may be marked on diagram		
	BCT + ACB = 90° (angle between tangent and radius/diameter)				
	and CAB + ACB = 90° (angles in semicircle)	Q1	Strand (ii) Fully correct proof with reasons. Q0 if any reasons not given		
	so $CAB = 180 - (y - 90 + 90)$ (angles in triangle)				

Additional guidance on next page

Q	Answer	Mark	Comments
	Additional Guidance		
	B1s can be awarded without reasons, b	ut Q can only	y be awarded if all reasons given.
19(a) cont	Ignore numerical values.		
Cont	eg BTS marked or stated as 100 and B	TC = 80 mar	ked or stated.
	But BTS marked or stated as 100 and E	BTC = 180 - 1	y = 80 marked or stated get B1
	This is a proof and must be done algebr	aically.	

	BTC or BCT or CAB = 70	M1	These values may be seen on diagram. 20 + 180 - y = 90 (oe)	
19(b)	110	A1	Check on diagram	
13(6)	Additional Guidance			
	If (b) blank, check diagram and/or part (a). Answer for (b) given in (a) then award appropriate marks.			

Q	Answer		Mark	Comm	ents
		,			
20(a)	m^3		B1	Do not accept $m \times m$	× m
	$3 \times 5 + 5 \times \sqrt{2} - 3 \times \sqrt{2} - \sqrt{2}$ or $3 \times 5 + 2\sqrt{2} - \sqrt{2}\sqrt{2}$	$\times \sqrt{2}$	M1	oe 4 terms or correct co needed. If 4 terms giver for M1	
	or $13 + 5\sqrt{2} - 3\sqrt{2}$			Allow in 'box method' or for correct signs (still all	
	$13 + 2\sqrt{2}$		A1		
		Ad	ditional C	Guidance	
	If answer correct allow 2 mark	S.			
	$15 + 5\sqrt{2} - 3\sqrt{2} + 4$ $19 + 2\sqrt{2}$				M1 A0
20(b)	×	3		√2	MO
	5	15		5√2	(Only two terms
	√2	3√2	2	2	correct)
	17 + 8√2				
	×	3		√2	M1 ————————————————————————————————————
	5	15		5√2	(Terms incorrect
	-√2	3√2	2	2	in table but 'recovered')
	13 + 2√2				
	$5 \times 3 = 15, 3 \times \sqrt{2} = 3\sqrt{2}, 5$ $13 + 8\sqrt{2}$	$\times \sqrt{2} = 5\sqrt{2}$	2, −√2 ×	√2 = −2	M1 A0

Q	Answer	Mark	Comme	nts
	•			
	$\frac{27}{5}$ or $5\frac{2}{5}$ or 5.4	В3	B2 for 27 and $\frac{1}{5}$ B2 for $\frac{1}{5} \times 3^3$ B1 for 27 or $\frac{1}{5}$ B1 for 5 and 3 seen	
20(c)	Ad	ditional G	Guidance	
	$\frac{1}{5} \times 3^3 = \frac{1}{5} \times 9 = 1.8$			B2
	$\frac{1}{5} \times 9 = 1.8$			B1
	$\sqrt{25} = \pm 5$ and $\sqrt[4]{81} = \pm 3$ (allow a mixtunegative elsewhere not allowed)	re or + an	d – for 3 and 5 but	B1

Q	Answer	Mark	Coi	nments		
	$(6x-5)^2 = 5x$	M1	oe allow invisible braie $6x - 5 \times 6x - 5 =$			
	$36x^2 - 30x - 30x + 25 = 5x$	A1	oe			
	Additional Guidance					
	It is not necessary to show the subtraction $36x^2 - 30x - 30x + 25 = 5x$ is sufficient.	is not necessary to show the subtraction of $-5x$ from $x^2 - 30x - 30x + 25 = 5x$ is sufficient.				
21(a)	Always worth checking diagram for poter	ntial worki	ng.			
	It has to be clear that the areas are equa	ited, other	wise easy to 'fiddle' th	ne algebra		
	$(6x - 5)^2 = 36x^2 - 30x - 30x + 25$ $36x^2 - 30x - 30x + 25 - 5x = 0$	No evide	ence of equating	МО		
	$(6x - 5)^{2} = 36x^{2} - 30x - 30x - 25$ $36x^{2} - 60x - 25 = 5x$ $36x^{2} - 65x + 25 = 0$	$(6x - 5)^2$	ward if expansion of is wrong, even if ed' as answer given	M1 A0		

Comments

Q

Answer

	Alternative method 1		
	$(ax \pm c)(bx \pm d)$	M1	ab = 36 and $cd = 25$ but not $(6x - 5)(6x - 5)$
	(4x-5)(9x-5)	A1	
21(b)	$\frac{5}{4}$ and $\frac{5}{9}$ seen	A1ft	oe eg 1.25 and 0.5 (0.55 minimum) ft on $(4x \pm 5)(9x \pm 5)$ only
	$\frac{5}{4}$ given as answer and $\frac{5}{9}$ shown to give a negative length	Q1ft	Strand (ii) oe ft their values, evaluated correctly from their factorisation, for \boldsymbol{x} if a valid conclusion reached

	Alternative method 2				
21(b)	$\frac{-(-65) \pm \sqrt{(-65)^2 - 4(25)(36)}}{2 \times 36}$	M1	Allow 1 error, but not wrong formula, eg \pm instead of \pm , 2 instead of $2a$ or only dividing root by $2a$.		
	$\frac{65 \pm \sqrt{625}}{72}$	A1	oe		
	$\frac{5}{4}$ and $\frac{5}{9}$ seen	A1ft	oe $\frac{90}{72}$ and $\frac{40}{72}$ ft on -65 only for -b giving $-\frac{5}{4}$ and $-\frac{5}{9}$ (oe)		
	$\frac{5}{4}$ given as answer and $\frac{5}{9}$ shown to give a negative length	Q1ft	Strand (ii) oe ft their values for x if a valid conclusion reached		

Question 21(b) continues on next page

Q	Answer	Mark	Comments

	Additional Guidance				
	(4x+5)(9x+5) = 0	M1, A0			
21(b) cont	$x = -\frac{5}{4} \text{ and } -\frac{5}{9}$	A1ft			
	Both these values are impossible as they lead to negative lengths (oe)	Q1			
	$(4x - 5)(9x + 5) = 0$ $x = \frac{5}{4} \text{ and } -\frac{5}{9}$	M1, A0 A1ft			
	$\frac{5}{4}$ given as answer and $-\frac{5}{9}$ stated to give a negative length (oe)	Q1			
	(4x + 5)(9x - 5) = 0	M1, A0			
	$x = -\frac{5}{4} \text{ and } \frac{5}{9}$	A1ft			
	Both these values are impossible as they both lead to negative lengths	Q1			
	$\frac{-65 \pm \sqrt{625}}{72}$	M1, A0			
	$x = -\frac{5}{4} \text{ and } -\frac{5}{9}$	A1ft			
	Both these values are impossible as they lead to negative lengths (oe)	Q1			