AQA

GCSE
 Mathematics

Paper 1 43651H
Mark scheme

43651H
June 2015

Version 1: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Paper 1 Higher Tier

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

1(b)	$w=z-3 \text { or } w=-3+z$ or $z-3=w$ or $-3+z=w$	B1	Must have $w=$ or $=w$
	Additional Guidance		
	Many students write z like the number 2. Allow for this		

Q	Answer	Mark	Comments

2	Straight ruled line graph from ($-3,-11$) to $(3,7)$	B3	B2 for correct partial straight-line graph that does not go from $(-3,-11)$ to $(3,7)$ but does go to at least $(-2,-8)$ on the left and $(2,4)$ on the right. B2 for no line but points $(-3,-11),(3,7)$ and one from $\{(-2,-8),(-1,-5),(0,-2),(1,1)$, $(2,4)\}$ marked with no incorrect points. B1 for straight line graph with gradient of 3 of any length. or B1 for straight line graph passing through $(0,-2)$ of any length. or B1 if no graph drawn and table of values with at least three correct points, ignore incorrect points. or B1 for at least three correct points marked on graph (points may be implied by a line passing through at least 3 integer values of x) with incorrect points or lines also drawn.
	Additional Guidance		
	Quality of plotting and drawing.		
	Points must be plotted within $1 / 2$ square. Lines should pass within $1 / 2$ square of the correct coordinate (not the plotted value). Any 'double lines' or choice maximum B2 Points plotted wrongly but line drawn correctly, line takes precedence for a maximum of B 2 .		

\mathbf{Q}	Answer	Mark	Comments

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Additional Guidance

Students may convert wrongly to millilitres using a factor of 10 (ie 450) then convert back using the same 'wrong' factor to get the correct answer. Allow this, as the method is valid.

However, partial marks cannot be awarded if a wrong conversion factor is used but if digits 27 seen allow SC1
(1 gallon =) 45 millilitres
(3 gallons =) 135 millilitres
135 millilitres $\div 10=13.5$ litres
M1,
$13.5 \div 10 \times 200=270$ M1dep, A1
(1 gallon =) 45 millilitres
(3 gallons =) 135 millilitres
SC1
$135 \div 10 \times 200=2700$
3
If a 'build up' method is used to get millilitres equivalent to 13.5 litres then it must be fully correct to get the M1dep

13.5
$10=200,1=20,3 \times 20=80,0.5=10$ $200+80+10=290$
13.5 $10=200,1=20,3=60,0.5=10$ $200+20+60+10=290$
Gallons

\mathbf{Q}	Answer	Mark	Comments

Q	Answer	Mark	Comments

| 11×2.5 or 27.5
 or 3.1×3^{2} or 27.9 or 9π | M1 | Allow 3.14×3^{2}
 Accept 27.5^{2} as meaning $27.5 \mathrm{~cm}^{2}$ | |
| :--- | :--- | :--- | :--- | :--- |
| 27.5 and 27.9 or 28.26 | A1 | Do not accept 9π at this stage as comparison
 of values cannot be made without evaluation
 to a number. | |
| Correct conclusion based on both their
 areas using correct methods with at
 least one correct area | Q1 | Strand (iii)
 Ignore any incorrect subtraction of
 $27.9-27.5$ | |
| Additional Guidance | | Both methods, one value
 incorrect, correct conclusion
 using name of shape | M1, A0, Q1 |
| Indication of which is bigger shape can be done by the name, the value or the calculation. | | | |

\mathbf{Q}	Answer	Mark	Comments

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

7	Alternative method 1		
	Correctly lists first three bus times to X or Y ie $7 \text { 25, } 7 \text { 50, } 8 \text { 15, ... }$ or $720,740,800, \ldots$	M1	Accept any notation for time eg 7.20, 7:20 7 20, 0720, 7-20, 20 past 7,720
	Continues both lists at least as far as a common time ie $7 \text { 25, } 7 \text { 50, } 8 \text { 15, } 8 \text { 40, ... }$ and $7 \text { 20, } 7 \text { 40, } 8 \text { 00, } 8 \text { 20, } 840, \ldots$	M1dep	Allow one error up to and including their common time, ignore errors after.
	$8.40(\mathrm{am})$ or 0840 or after/in 100 minutes or after/in 1h 40 minutes	A1	SC2 No other working and any time that is $7 \mathrm{am}+100 \mathrm{n}$ minutes, eg $1020,1200,13$ 40 etc..
	Alternative method 2		
	Correctly lists first three multiples of 25 or 20 ie $25,50,75, \ldots$ or $20,40,60, \ldots$	M1	25×4 and 20×5
	Stops both lists at 100 or identifies 100 or 1 hour 40 minutes	M1dep	
	$8.40(\mathrm{am})$ or 0840 or after/in 100 minutes or after/in 1h 40 minutes	A1	SC2 No other working and any time that is $7 \mathrm{am}+100 \mathrm{n}$ minutes, eg $1020,1200,13$ 40 etc..

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\begin{gathered} 7 \\ \text { cont } \end{gathered}$	Additional Guidance		
	$\begin{aligned} & 725,750,815,840,905, \ldots \\ & 720,740,800,820,840,900, . . \\ & (\text { Answer =) } 840 \mathrm{pm} \end{aligned}$	pm is wrong.	M1 M1dep AO
	(No working) (Answer =) 840 pm	Method by implication	M2
	$\begin{aligned} & 7 \text { 25, } 7 \text { 50, } 8 \text { 05, } 8 \text { 30, } 8 \text { 55, } 920 \\ & 7 \text { 20, } 740,800,820,840,900920 \\ & \text { (Answer =) } 920 \end{aligned}$	Second list correct for 3 values. One error in first list. Both lists taken to a common value	M1 M1dep A0
	$\begin{aligned} & 725,750,810,830,900,915 \\ & 720,740,800,820,840,900 \\ & \text { (Answer =) } 900 \end{aligned}$	Second list correct for 3 values. Both lists taken to a common value but more than one error in first list.	M1 MOdep AO
	$\begin{aligned} & 25,50,75,80, \\ & 20,40,60,80, \\ & \text { (Answer =) } 810 \end{aligned}$	At least one list correct for 3 values. Does not get to 100	$\begin{aligned} & \text { M1 } \\ & \text { M0 } \\ & \text { A0 } \end{aligned}$
	$\begin{aligned} & 700,25,50,815,40,905, \ldots \\ & 700,20,40,800,20,40,900 \\ & 840 \end{aligned}$	Intention to list times clear	M1 M1dep A1
	As question asks for 'When..' rather th 8.40 but could qualify it as a length of	n 'What time..' then the students do no me after 7am. If so then the wording	e to say e clear.
	$\begin{aligned} & 725,750,815,840,905, \ldots \\ & 720,740,800,820,840,900, . . \\ & \text { (Answer =) } 1 \text { h } 40 \text { after } 7 \end{aligned}$	Must make it clear that the time is after 7 (am)	M1 M1dep A1
	$\begin{aligned} & 725,750,815,840,905, \ldots \\ & 720,740,800,820,840,900, . . \\ & \text { (Answer =) } 1 \text { h } 40 \end{aligned}$	Not clear that the time is after 7 am	M1, M1dep AO

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

9(a)	0.4 (relative frequency of carp) or 1 (bream)			B1	oe	
	their roach frequency $\div 10$ (must be less than 1) or 1 - their carp relative frequency -0.1 or 0.5			M1	oe	
	$\begin{aligned} & \text { Fully } \\ & \begin{array}{\|c} \hline(4) \\ \hline 0.4 \end{array} \end{aligned}$	$\frac{\frac{e c t ~ t a}{1}}{(0.1)}$	$\frac{\text { ie }}{\frac{5}{0.5}}$	A1	oe accept equivalent fractions or percentages for relative frequencies throughout	
	Additional Guidance					
	If table fully correct award 3 marks. If not check for 0.4 or 1. Either scores B1. Then check last column/bottom row. If the roach relative frequency $=$ roach frequency $\div 10$ or if the total of the relative frequencies is 1 then award M 1 .					

\mathbf{Q}	Answer	Mark	Comments

9(b)	Increase sample size Repeat it Check some more Catch more fish	B1	oe	
	Additional Guidance			
	Count it again, catch more fish	Last bit scores		B1
	Fish on more days	More implies increased sample		B1
	Fish for longer	Longer implies increased sample		B1
	Fish on different days	Different does not imply increased sample		B0
	Do the estimate twice	Not implying increasing sample		B0
	Catch them all	Not a sample		B0
	Experiment at different times of day	Not implying increasing sample		B0

\mathbf{Q}	Answer	Mark	Comments

10	$52-6 n$ or $-6 n+52$	B2		alue, in n 52 2 is $B 1$
	Additional Guidance			
	If $52-6 n$ seen in script and 16 (next term) given on answer line allow B2			
	Allow any letter used, eg 52-6x			
	Accept equivalent expressions such as $46-6(n-1)$			
	Allow \times signs, eg $-6 \times n+52, n \times-6+52$			
	$46-n-5(n+1)$			B1
	$52-6 n=0$			B1

Q	Answer	Mark	Comments

	Alternative method 1
	M1 \quadMwo arcs of equal radius centred on P, crossing L.
11	Arcs on other side of L measured from X and Y with same radius. Arcs on other side of L measured from X and Y with radius $X P$ (effectively reflection of P), arcs need not be drawn at P. or arcs for perpendicular bisector of $X Y$ drawn on both sides of L.
	A1 Line within tolerance. Line does not have to go below L.
	Additional Guidance
	This method requires starting at P and establishing two points on L from which to work. Only arcs on the other side of the line from L need be shown, although arcs on both sides often are. Use the overlay to establish if points X and Y are equidistant ($\pm 1 \mathrm{~mm}$) from centre. Use measuring tool if necessary to establish if radii of arcs drawn are equal. Use the 'contrast slider' to darken the image if necessary as pencil does not show up well under scanning. If the second pair of arcs intersect on same side of L as P, above or below P, this is not an accurate method, however, allow if perpendicular within tolerance ($\pm 1 \mathrm{~mm}$ from centre)

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\begin{gathered} 11 \\ \text { cont } \end{gathered}$	Alternative method 2		
		M2	Intersecting arcs centred on each end of L with radii equal to the distance to P, drawn on other side of L. Intersecting arcs centred on two points on L with radii equal to the distance to P, drawn on other side of L. The arcs need not be drawn through P.
		A1	Line within tolerance. Line does not have to go below L.
	Additional Guidance		
	This is a common method. Measuring from P from either end and drawing arcs on other side gives a reflection of P. Both arcs must be drawn to get M2. Use overlay to establish if the radii are accurate $\pm 1 \mathrm{~mm}$ Another method combining elements of Alt 1 and 2, is to draw arcs through P from either end that intersect L. Then use these points to establish the radii to P to draw arcs on the other side. This (rare) method can be checked using the overlay on the drawing tools. Use the 'contrast slider' to darken the image if necessary as pencil does not show up well under scanning.		

\mathbf{Q}	Answer	Mark	Comments

12(a)	Continuous graph from (1, 9) to (9, 1)		B2	B1 all integer points from $(1,9)$ to $(9,1)$ or B1 for a continuous graph beyond the given limits, unless $x \leq 1$ or $x \geq 9$ clearly shown as a crossed out region. Ignore any other shading or B1 for continuous graph from $(2,8)$ to $(8,2)$	
	Additional Guidance				
	Ignore lines, such as $w=1$ or $w=9$, but not any lines that may be a wrong $w+l=10$. If there is a choice of lines then correct line must be clearly marked but not if the other line is $l=3 w$ or $w=3 l$				

12(b)	Alternative method 1		
	Graph of $l=3 w$ drawn	M1	
	2.5	A1	SC1 7.5 from $w=31$ drawn
	Alternative method 2		
	$4 w=10$	M1	oe
	2.5	A1	Allow embedded.
	Additional Guidance		
	If 2.5 stated in script, award full marks, otherwise scroll up to check graph for possible working.		

\mathbf{Q}	Answer	Mark	Comments

13	$\begin{aligned} & 12: \frac{16}{} \text { or } 15: 12 \\ & \text { or } \frac{12}{16} \text { or } 0.75 \\ & \text { or } \frac{16}{12} \text { or } 1.33 \\ & \text { or } \frac{15}{12} \text { or } 1.25 \\ & \text { or } \frac{12}{15} \text { or } 0.8 \end{aligned}$	M1	oe	
	20	A1	From $20 \text { is }$	rounde
	Additional Guidance			
	$\frac{16}{12}=1.3,1.3 \times 15=19.5$			M1, A0
	$1.33 \times 15=19.995$			M1, A0
	$1.3 \times 15=19.5$			MO, AO

\mathbf{Q}	Answer	Mark	Comments

14	Alternative method 1		
	6 stated or shown on diagram as length from A to intersection of $A B$ and horizontal line from D.	B1	Maybe on diagram
	$10^{2}-$ their 6^{2} or 64 or $(B C)^{2}+6^{2}=10^{2}$	M1dep	their 6 is the length from A to intersection of $A B$ and horizontal line from D. $10^{2}+\text { their } 6^{2} \text { or } 136$
	\checkmark their 64	M1 dep	64 must come from 10^{2} - their 6^{2}
	8	A1	8 with no working M0
	Alternative method 2		
	6 stated or shown on diagram as length from A to intersection of $A B$ and horizontal line from D.	B1	Maybe on diagram
	3, 4, 5 Pythagorean triple shown	M1	
	6, 8 shown or stated	M1 dep	
	8	A1	8 with no working M0

Question 14 continues on next page

\mathbf{Q}	Answer	Mark	Comments

| 14 |
| :---: | :---: | :---: | :---: |
| cont |

Q	Answer	Mark	Comments

$16 \mathbf{a}$	$-\frac{3}{2}$	B1	

$\mathbf{1 6 b}$	$\frac{4}{3}$	B1	

\mathbf{Q}	Answer	Mark	Comments

18	$(3 a-b)(3 a+b)$	M1	
	$3 a+b$	A1	Answer only 2 marks
	Additional Guidance		
	Check answer is from correct work, as spurious 'cancelling' could lead to the correct answer		
	$\begin{gathered} 3 a-\frac{3 a^{2}-b^{2}}{3 a-b}=3 a+b \\ 9 a^{2} \div 3 a=3 a \\ -b^{2} \div-b=+b \end{gathered}$	M0	

\mathbf{Q}	Answer	Mark	Comments

Additional guidance on next page

\mathbf{Q}	Answer	Mark	Comments

19(a) cont	Additional Guidance
eg $B T S$ marked or stated as 100 and $B T C=80$ marked or stated.	
But $B T S$ marked or stated as 100 and $B T C=180-y=80$ marked or stated get B1	
This is a proof and must be done algebraically.	

19(b)	$B T C$ or BCT or $C A B=70$	M1	These values may be seen on diagram. $20+180-y=90$ (oe)
	110	A1	Check on diagram
	Additional Guidance		
	If (b) blank, check diagram and/or part (a). Answer for (b) given in (a) then award appropriate marks.		

\mathbf{Q}	Answer	Mark	Comments

20(a)	m^{3}	B1	Do not accept $m \times m \times m$

\mathbf{Q}	Answer	Mark	Comments

20(c)	$\frac{27}{5}$ or $5 \frac{2}{5}$ or 5.4		B2 for 27 and $\frac{1}{5}$ B2 for $\frac{1}{5} \times 3^{3}$ B1 for 27 or $\frac{1}{5}$ B1 for 5 and 3 see	
	Additional Guidance			
	$\frac{1}{5} \times 3^{3}=\frac{1}{5} \times 9$			B2
	$\frac{1}{5} \times 9=1.8$			B1
	$\sqrt{25}= \pm 5$ and $\sqrt[4]{81}= \pm 3$ (allow a mixture or + and - for 3 and 5 but negative elsewhere not allowed)			B1

\mathbf{Q}	Answer	Mark	Comments

21(a)	$(6 x-5)^{2}=5 x$	M1	oe allow invisible br ie $6 x-5 \times 6 x-5$	
	$36 x^{2}-30 x-30 x+25=5 x$	A1	oe	
	Additional Guidance			
	It is not necessary to show the subtraction of $-5 x$ from both sides. Getting to $36 x^{2}-30 x-30 x+25=5 x$ is sufficient.			
	Always worth checking diagram for potential working.			
	It has to be clear that the areas are equated, otherwise easy to 'fiddle' the algebra			
	$\begin{aligned} & (6 x-5)^{2}=36 x^{2}-30 x-30 x+25 \\ & 36 x^{2}-30 x-30 x+25-5 x=0 \end{aligned}$	No ev	nce of equating	M0
	$\begin{aligned} & (6 x-5)^{2}=36 x^{2}-30 x-30 x-25 \\ & 36 x^{2}-60 x-25=5 x \\ & 36 x^{2}-65 x+25=0 \end{aligned}$	$\begin{array}{\|l} \text { Do no } \\ (6 x- \\ \text { 'recov } \end{array}$	ward if expansion of is wrong, even if d' as answer given	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

21(b)	Alternative method 1		
	$(a x \pm c)(b x \pm d)$	M1	$a b=36$ and $c d=25$ but not $(6 x-5)(6 x-5)$
	$(4 x-5)(9 x-5)$	A1	
	$\frac{5}{4} \text { and } \frac{5}{9} \text { seen }$	A1ft	oe eg 1.25 and $0 . \dot{5}$ (0.55 minimum) ft on $(4 x \pm 5)(9 x \pm 5)$ only
	$\frac{5}{4}$ given as answer and $\frac{5}{9}$ shown to give a negative length	Q1ft	Strand (ii) oe ft their values, evaluated correctly from their factorisation, for x if a valid conclusion reached

21(b)	Alternative method 2		
	$\frac{-(-65) \pm \sqrt{(-65)^{2}-4(25)(36)}}{2 \times 36}$	M1	Allow 1 error, but not wrong formula, eg + instead of $\pm, 2$ instead of $2 a$ or only dividing root by $2 a$.
	$\frac{65 \pm \sqrt{625}}{72}$	A1	oe
	$\frac{5}{4} \text { and } \frac{5}{9} \text { seen }$	A1ft	oe $\frac{90}{72}$ and $\frac{40}{72}$ ft on -65 only for $-b$ giving $-\frac{5}{4}$ and $-\frac{5}{9}$ (oe)
	$\frac{5}{4}$ given as answer and $\frac{5}{9}$ shown to give a negative length	Q1ft	Strand (ii) oe ft their values for x if a valid conclusion reached

Question 21(b) continues on next page

\mathbf{Q}	Answer	Mark	Comments

$\begin{aligned} & \text { 21(b) } \\ & \text { cont } \end{aligned}$	Additional Guidance	
	$\begin{aligned} & (4 x+5)(9 x+5)=0 \\ & x=-\frac{5}{4} \text { and }-\frac{5}{9} \end{aligned}$ Both these values are impossible as they lead to negative lengths (oe)	M1, A0 A1ft Q1
	$\begin{aligned} & (4 x-5)(9 x+5)=0 \\ & x=\frac{5}{4} \text { and }-\frac{5}{9} \\ & \frac{5}{4} \text { given as answer and }-\frac{5}{9} \text { stated to give a negative length (oe) } \end{aligned}$	M1, A0 A1ft Q1
	$\begin{aligned} & (4 x+5)(9 x-5)=0 \\ & x=-\frac{5}{4} \text { and } \frac{5}{9} \end{aligned}$ Both these values are impossible as they both lead to negative lengths	M1, A0 A1ft Q1
	$\begin{aligned} & \frac{-65 \pm \sqrt{625}}{72} \\ & x=-\frac{5}{4} \text { and }-\frac{5}{9} \end{aligned}$ Both these values are impossible as they lead to negative lengths (oe)	M1, A0 A1ft Q1

